

Transverse


Radial Fracture

Compression Plating:

step by step guide

* In this guide a tibia bone is shown, however the same principles can be applied to a radial fracture

Equipment required:

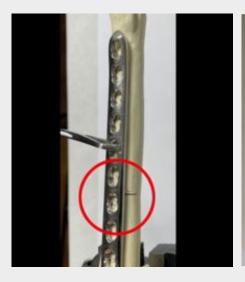
- Series of bone and plate reduction forceps
- Two drill bits 2.5mm diameter (cortical screw) and 2.8mm (locking screw)
- Locking guide
- Universal drill guide
- Screwdriver with T-15 star drive bit
- Depth gauge
- Plate bending irons
- Appropriately sized 3.5mm
 Locking Compression Plate (LCP)

Transverse fractures can be difficult to stabilise in reduction using pointed bone reduction forceps because there is no useful bone to counteract shear forces.

• In some cases, Kern bone holding forceps (which have more than one point) can be used to stabilise these fractures.

Step 3 VPOP PRO - Virtual Preoperative Orthopaedic Planning Tool

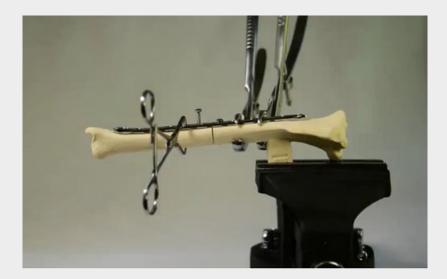
- Utilise VPOP Pro in the planning stage
- Select an appropriate locking compression plate to stabilise the fracture



- Apply small amount of pre-stress to the plate immediately over the fracture site to compress trans cortex. This will establish a load sharing construct between the bone and the plate - maximising its longevity.
- Contour plate with plate bending irons to establish load sharing construct between the bone and the plate

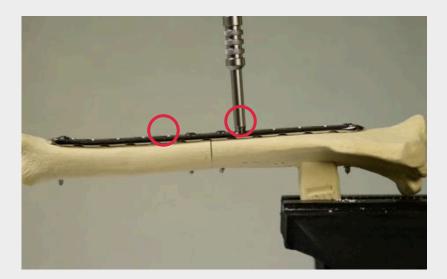


** The Kern bone holding forceps have been removed for the purpose of the demonstration

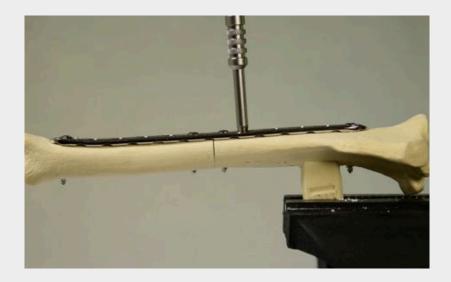


- · Drill first screw hole immediately adjacent to the fracture line.
- The plate should be positioned so that there is a screw positioned either side of the fracture line, and no empty hole over the fracture.
- Drill hole in a neutral or load position through first and second cortex
- Check depth with depth gauge through the hole and select appropriate sized screws.

- Apply gentle pressure and encourage the cutting flutes to engage the bone
- Advance the screw just until the spherical screwhead engages the surface of the plate.



- Repeat steps 5 and 6 and place the second screw away from the fracture site using the universal drill guide. Place screw in a load position, and tighten.
- Observe what happens at the fracture gap. We should have a compressed fracture and a load sharing construct start to become established.



- Place the most proximal and most distal screws in the plate in a neutral position, as further compression is no longer required.
- Use universal guide and drill through 2 cortices approximately.
- Check depth with depth gauge through the hole & select appropriate sized cortical screws. Advance screws.



- Clamps can now be removed as the plate is securely fastened to the bone with two cortical screws in each fragment.
- Insert a locking screw in either fragment both proximally and distally as shown.
- Change to 2.8mm drill bit. Secure locking guide to the plate and drill both holes through the first and second cortexes.

- · Remove locking guide and measure both holes created
- Place locking screws and tighten



- Fracture fixation is now complete using four cortical screws and two locking screws.
- These screws protrude further past the cortex and trans cortex by 2mm to allow complete thread engagement.

Final Result

Want to learn more?

If you're ready to pick up the drill and repair your first fractures, this two-day entry-level orthopaedics course is exactly what you need. Start your orthopaedic development the right way, from handling equipment to full procedural guidance and into postoperative care.

Visit this link to find out more information & sign up!

CONTACT US

- * +61 491 943 260
- getanswers@vetprac.com
- www.vetprac.com.au
- www.facebook.com/vetprac